Wide field astronomical image compensation with multiple laser-guided adaptive optics

نویسندگان

  • Michael Hart
  • N. Mark Milton
  • Christoph Baranec
  • Thomas Stalcup
  • Keith Powell
  • Eduardo Bendek
  • Don McCarthy
  • Craig Kulesa
چکیده

We report closed-loop results obtained from the first adaptive optics system to deploy multiple laser guide beacons. The system is mounted on the 6.5 m MMT telescope in Arizona, and is designed to explore advanced altitude-conjugated techniques for wide-field image compensation. Five beacons are made by Rayleigh scattering of laser beams at 532 nm integrated over a range from 20 to 29 km by dynamic refocus of the telescope optics. The return light is analyzed by a unique Shack-Hartmann sensor that places all five beacons on a single detector, with electronic shuttering to implement the beacon range gate. Wavefront correction is applied with the telescope's unique deformable secondary mirror. The system has now begun operations as a tool for astronomical science, in a mode in which the boundary-layer turbulence, close to the telescope, is compensated. Image quality of 0.2-0.3 arc sec is routinely delivered in the near infrared bands from 1.2–2.5 μm over a field of view of 2 arc min. Although it does not reach the diffraction limit, this represents a 3 to 4-fold improvement in resolution over the natural seeing, and a field of view an order of magnitude larger than conventional adaptive optics systems deliver. We present performance metrics including images of the core of the globular cluster M3 where correction is almost uniform across the full field. We describe plans underway to develop the technology further on the twin 8.4 m Large Binocular Telescope and the future 25 m Giant Magellan Telescope.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wide-Field Image Compensation with Multiple Laser Guide Stars

We report closed-loop results obtained from the first adaptive optics system to deploy multiple laser guide beacons. The system is mounted on the 6.5 m MMT telescope in Arizona, and is designed to explore advanced altitudeconjugated techniques for wide-field image compensation. Five beacons are made by Rayleigh scattering of laser beams at 532 nm integrated over a range from 20 to 29 km by dyna...

متن کامل

First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes

An approach is presented for evaluating the performance achieved by a closed-loop adaptive-optics system that is employed with an astronomical telescope. This method applies to systems incorporating one or several guide stars, a wave-front reconstruction algorithm that is equivalent to a matrix multiply, and one or several deformable mirrors that are optically conjugate to different ranges. Sys...

متن کامل

Verification of a System to Prevent Aircraft Illumination by Adaptive Optics Laser Beacons

Laser beams directed into the sky from astronomical observatories to generate guide beacons for adaptive optics image sharpening systems are a potential hazard to aircraft. Detection systems are needed to sense aircraft and interrupt the laser beam to prevent accidental illumination. We describe here a system designed for this task. A computer examines CCD images of the sky over a wide field of...

متن کامل

Early closed-loop results from the MMT's multi-laser guide star adaptive optics system

Key advances in adaptive optics (AO) for both astronomical and military applications will be enabled through the deployment of multiple laser guide stars on large-aperture telescopes. Wider compensated fields of view than are now seen with conventional AO systems, even those equipped with single laser beacons, will be achieved with less field dependence of the delivered point-spread function. C...

متن کامل

Seeing Improvement with Ground-Layer Adaptive Optics

Ground-layer adaptive optics (GLAO) promises a significant improvement in image width and energy concentration over atmospheric seeing in a relatively wide field by compensating for low-altitude turbulence only. This approach, which is intermediate between full AO and seeing-limited observations, can benefit many astronomical programs in the visible and near-infrared. We have developed a simple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009